TRPM8 is required for survival and radioresistance of glioblastoma cells
نویسندگان
چکیده
TRPM8 is a Ca2+-permeable nonselective cation channel belonging to the melastatin sub-group of the transient receptor potential (TRP) family. TRPM8 is aberrantly overexpressed in a variety of tumor entities including glioblastoma multiforme where it reportedly contributes to tumor invasion. The present study aimed to disclose further functions of TRPM8 in glioma biology in particular upon cell injury by ionizing radiation. To this end, TCGA data base was queried to expose the TRPM8 mRNA abundance in human glioblastoma specimens and immunoblotting was performed to analyze the TRPM8 protein abundance in primary cultures of human glioblastoma. Moreover, human glioblastoma cell lines were irradiated with 6 MV photons and TRPM8 channels were targeted pharmacologically or by RNA interference. TRPM8 abundance, Ca2+ signaling and resulting K+ channel activity, chemotaxis, cell migration, clonogenic survival, DNA repair, apoptotic cell death, and cell cycle control were determined by qRT-PCR, fura-2 Ca2+ imaging, patch-clamp recording, transfilter migration assay, wound healing assay, colony formation assay, immunohistology, flow cytometry, and immunoblotting. As a result, human glioblastoma upregulates TRPM8 channels to variable extent. TRPM8 inhibition or knockdown slowed down cell migration and chemotaxis, attenuated DNA repair and clonogenic survival, triggered apoptotic cell death, impaired cell cycle and radiosensitized glioblastoma cells. Mechanistically, ionizing radiation activated and upregulated TRPM8-mediated Ca2+ signaling that interfered with cell cycle control probably via CaMKII, cdc25C and cdc2. Combined, our data suggest that TRPM8 channels contribute to spreading, survival and radioresistance of human glioblastoma and, therefore, might represent a promising target in future anti-glioblastoma therapy.
منابع مشابه
Radioresistance of mesenchymal glioblastoma initiating cells correlates with patient outcome and is associated with activation of inflammatory program
Glioblastoma (GBM) still remains an incurable disease being radiotherapy (RT) the mainstay treatment. Glioblastoma intra-tumoral heterogeneity and Glioblastoma-Initiating Cells (GICs) challenge the design of effective therapies. We investigated GICs and non-GICs response to RT in a paired in-vitro model and addressed molecular programs activated in GICs after RT. Established GICs heterogeneousl...
متن کاملEvidence that TRPM8 Is an Androgen-Dependent Ca Channel Required for the Survival of Prostate Cancer Cells
The Ca -permeable channel TRPM8 is thought to play an important role in the pathophysiology of prostate cancer. We have investigated the intracellular location of TRPM8 and its role as a Ca -permeable channel in an androgen-responsive and an androgen-insensitive prostate cancer cell line. We report evidence from immunofluorescence experiments that in the androgen-responsive LNCaP cell line, the...
متن کاملEvidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells.
The Ca(2+)-permeable channel TRPM8 is thought to play an important role in the pathophysiology of prostate cancer. We have investigated the intracellular location of TRPM8 and its role as a Ca(2+)-permeable channel in an androgen-responsive and an androgen-insensitive prostate cancer cell line. We report evidence from immunofluorescence experiments that in the androgen-responsive LNCaP cell lin...
متن کاملIncorporating cancer stem cells in radiation therapy treatment response modeling and the implication in glioblastoma multiforme treatment resistance.
PURPOSE To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. METHODS AND MATERIALS The radiosensit...
متن کاملRNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis
An interaction between ribosomal protein S3 (rpS3) and nuclear factor kappa B or macrophage migration inhibitory factor in non-small-cell lung cancer is responsible for radioresistance. However, the role of rpS3 in glioblastoma (GBM) has not been investigated to date. Here we found that in irradiated GBM cells, rpS3 translocated into the nucleus and was subsequently ubiquitinated by ring finger...
متن کامل